OFFSNET OFFSNET
  • Home
  • About
  • News
    • Asia Pacific
    • Australia
    • North America
    • Latin America
    • Middle East
    • Europe
    • West Africa
  • Reports
  • Careers
  • Team
  • Contact
  • Conferences
    • Upcoming Conferences
OFFSNET OFFSNET
  • Home
  • About
  • News
    • Asia Pacific
    • Australia
    • North America
    • Latin America
    • Middle East
    • Europe
    • West Africa
  • Reports
  • Careers
  • Team
  • Contact
  • Conferences
    • Upcoming Conferences

Sign up for our newsletter

Please enter your details

Invalid Input
Invalid Input
Invalid Input
Invalid Input
Invalid Input
Asia Pacific
Australia
North America
Latin America
Middle East
Europe
West Africa
{loadmoduleid 1581}

North America

The Importance of Equipment Collaboration

  • Region: Gulf of Mexico
  • Topics: All Topics, Integrity
  • Date: Dec, 2019

23

By Simon Sparke – International Well Integrity

‘If you don’t monitor it you can’t measure it’, while this is probably fully understood, what is missing is ‘ensuring your measurement equipment is properly calibrated’, as a measurement is meaningless if the equipment response cannot be relied upon. As well integrity engineers, we need ONE source of truth and this must be reliable, repeatable and transparent.

Technology advances but are we missing something? In this digital age there seems to be less overall adherence to this critical task of calibration of downhole tools, even to the point where I have been told it was not necessary as the tool is self-calibrating which has the same amusement levels being told that gas wells have a bubble point.

Calibration is the act of comparing a device under test of an unknown value with a reference standard of a known value and in so doing, provides us with the means to determine the error or verify the accuracy of the device under test.

As well integrity engineers, one of our concerns is the status of the well tubulars through the field life, so that we need to understand the sources or causes of sustained annulus pressure and the location(s) of metal loss over and above that of allowable metal loss during manufacture. The change in wall thickness will help determine the MAASP or MAWOP and how this impacts the well operating status.

I use the phrase ‘metal loss’ as this is important. Pipe wall thickness variations occur for several reasons; manufacturing tolerance, wear caused by interventions, erosion, and corrosion. These various attributes need to be understood by any analyst including the logging company and form part of a rational discussion about well status and the causes for change.

A range of tools are available to help determine remaining wall thickness in our well tubulars. These include -:

·      The multi fingered caliper measures the internal status of a single tubular; recording metal loss due to corrosion but also recording wall thickness gains such as scale(s), paraffins and asphaltenes.

·      Electro magnetics, can make measurements of multiple tubular strings in a single logging pass and these tools are NOT influenced by scale, paraffin or asphaltenes

·      Sonic based tools can measure wall thickness and surface tubular status but can only record a single string and require a liquid filled environment

·      Cameras now provide a comprehensive ‘view’ of the tubular and the associated completion jewellery but can only measure a single tubular string.

How do we move forward and who or what do we believe? As well integrity requires rigorous charted, signed and witnessed pressure tests on much of our pressure control equipment, then surely it is correct for logging tools etc to be subject to a similar test(s) in order to qualify their effective readings, especially as the results could have an impact on well integrity and the safety of our colleagues. The data required should include; pipe size(s), weight, wall thickness and metal grade. It should be signed and dated. Review this calibration before logging starts and ensure it passes the ‘sniff test’. Therefore, if the service provider cannot or will not support their reports with repeatable calibration data, we must question their standards.

What must be used are the allowable wall thickness variations in the tubular manufacturing process. Two key documents are available; API-5CT for regular tubing and casing (OCTG) provides for a variation in wall thickness of -12.5%

API-5CRA for corrosion resistant alloy tubulars provides for a variation in wall thickness of -10.0% OR -12.5% which is driven by the heat treatment process.

To piece all this together and provide a meaningful result, several elements are needed. These include; logging results, API wall thickness tolerance, completion design + the well production characteristics + well history and a degree of common sense. However, and most crucially, calibration data is very important.

The pictures below show tools to measure metal loss in multiple tubing/casing strings. Operators use this data to determine well status, re-calculate MAASP and if/when a workover might be required to replace strings.

Setting a good industry example. My belief is that we should have similarly high expectations of service providers and they should demonstrate tool calibration as shown in the picture below. This company, Ginnovo, sends tools to the wellsite complete with a calibration cell. This provides the opportunity to confirm the accuracy of the collected data, while still in the field. It withstands scrutiny and demonstrates the appropriate level of professionalism that we as responsible companies should demand. If they can’t deliver, then my recommendation is to seek alternative providers and in this field there are several. 

Enabling Intelligent Intervention: A Connected Vision

  • Region: Gulf of Mexico
  • Topics: All Topics
  • Date: Nov, 2017

23

In pursuit of a safer and more cost-effective best practice approach to liquid-based rigless/riserless interventions, the oil and gas industry is engaged in a growing movement to identify new techniques and technologies that can help it to maximize revenues from existing brownfields and new assets by enhancing their output.

Download Attachments: Download PDF

 

Composite Pipe Design and Qualification

  • Region: Gulf of Mexico
  • Topics: All Topics
  • Date: Aug, 2017

23

This document can act as starting point for people who want to learn more about composite pipes in offshore applications, and is intended for engineers, Technical Authorities and managers active in the SURF, Subsea Intervention, Drilling and other related fields of activity.

 

Download Attachments: Download PDF

 

Inflatable technologies - The key to cost effective intervention?

  • Region: Gulf of Mexico
  • Topics: All Topics
  • Date: Jul, 2017

23

Introduction

The optimum design for offshore wells is one that requires minimal intervention work from the beginning of production to P&A operations. The only intervention that is generally acceptable is wireline work. Operators would prefer to avoid interventions, but even the best thought-out plans and designs may not perform as expected over the life of a well. Furthermore, there is a large inventory of producing wells that will require some form of intervention. With technological advances, many interventions can be done without the need of an expensive offshore rig by using coiled tubing and wireline. Using these deployment methods, operators can run many mechanical tools to correct problems and bring a well back on production. In some instances, however, a mechanical option may not be possible due to restrictions in a wellbore. In that case, inflatable tools can be used to help implement the needed solutions. Some examples of situations benefiting from inflatable tools are:

  • Plug-Back Operations
  • Squeeze Cementing
  • Repair of Leaks
  • Setting of Temporary Barriers
  • Well Integrity Testing

This article will highlight the typical inflatable products and their uses. Case histories will also be included.

 

Download Attachments: Download PDF

 

UNDERSTANDING WELLBORE HOLD-UP ISSUES

  • Region: Gulf of Mexico
  • Topics: All Topics
  • Date: Sep, 2019

23

Wellbore deformation can occur at any stage in the life of a well. Whether a result of changes in temperature, pressure or tectonic forces, wellbore deformation may result in serious downhole issues such as restricted access for interventions or the loss of well integrity, and could ultimately lead to premature well abandonment.

With no symptoms presented at surface, operators often discover deformation issues the hard way – during interventions. However, proactive diagnosis of well deformation enables operators to understand the cause and severity of the issue, enabling them to adjust their strategy and overcome it before a critical stage is reached.

EV’s 24 arm Integrated Video Caliper was deployed on e-line to help identify the cause of the hold up. The IVC tool combines industry leading Optis camera technology with multi-finger caliper technology to provide measurements of internal tubing and casing diameters.

This combination of video with multi-finger caliper data leads to enhanced interpretation and provides invaluable 360° pipe coverage to compliment the limited radial coverage available from a stand-alone mechanical caliper.

The liner top was inspected and a full 360-degree 3D model was provided. No visible signs of damage were identified and the geometry was confirmed to be normal. However further up the casing, the caliper data processed on MIPSPro indicated that the casing was helically buckled above the liner hanger.

Further RestrictionVA analysis was carried out based on data obtained from the multi-finger caliper. Firstly, a Pipe Deformation Analysis (PDA) was undertaken to define and quantify the 3D geometry of the tubulars that may have been sheared, buckled or deformed by other mechanisms. This process confirmed the presence of helical buckling in the casing and the reason why the original plug and perf string was unable to descend to the target depth. Then, by simulating the passage of multiple BHAs through this 3D geometry, a drift analysis was provided to understand the limits for access and identify the optimal BHA to pass the restriction.

  • 1
  • 2
  • 3
  • 4
  • 5

Page 5 of 5

Linkedin
Twiter
Contact Us

Quick Links

  • Reports
  • Conferences
  • Contact
  • Terms & Conditions

Latest Update

  • SLB's newest digital platform aims to boost well performance
  • 3M Ceramic Sand Screen
  • Woodside sets off major contracts for Trion deepwater development in Mexico
Address: University House, 11-13 Lower Grosvenor Place,
Westminster, London, SW1W 0EX
Phone: UK: + 44 (0) 20 3411 9937
Email: info@offsnet.com
Newsletter

Get the latest newsletter

Make your offshore journey smooth sailing by subscribing with us, and never miss an update again!

Invalid Input
Invalid Input